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Abstract. This paper deals with small geometrical and mechanical perturbations in nonlinear
structural dynamics of three-dimensional viscoelastic rotating structures for finite displace-
ments. The objective of the paper is to present the nonlinear equations of the problem written
in the rotating frame. The constitutive equation of the material is given for its natural config-
uration (structure at rest and without prestress). The three-dimensional viscoelasticity theory
(stresses depend on actual and past strains) with finite displacements of B.D. Coleman and W.
Noll (1961) is used without taking into account the material nonlinearities. The reference con-
figuration is defined asthe stationary configuration corresponding to the prestress configuration
under gyroscopic forces and stationary parts of the external forces applied to the structure in
the rotating frame. Then, for small geometrical and mechanical perturbations (mass density,
constitutive equation coefficients) applied to the natural configuration, nonlinear equations
around the reference configuration are derived in the time domain and then, the corresponding
linearized equations are deduced in the frequency domain and reduced using the Ritz-Galerkin
method. This paper shows that the equations obtained for geometrical perturbations are not
self-evident.

Keywords. Structural dynamics, Rotating structures, Nonlinear elasticity, Geometrical pertur-
bations.

1. NONLINEAR EQUATIONSIN THE ROTATING FRAME OF A ROTATING
STRUCTURE.

Physical space R® is referred to a Cartesian reference system (&1, € 2, €,3) With origin
O denoted as R,. The rotating frame (related to the structure in rotation) denoted as R; is
defined by origin O and a direct orthonormal basis (e 1(t), €1 2(t), €1 3(t)) which is deduced
from (ey,1, 0,2, €,3) by arotation represented by an orthogonal (3 x 3) real matrix [Q(¢)] and
is such that

ep() =[RQW)l&, , p=1,23 . (1)

In R, and at time ¢, the deformed configuration of the structure occupies a domain denoted as
Q(t) with boundary I'(t) U (t). We impose on I'(¢) arigid-body displacement field defined



by the rotation associated with [(Q)(¢)]. In order to describe the mouvement of the structure in
rotating frame R, we introduce a rotating natural configuration of the structure denoted as €2
in Ry with boundary I'g U ¥, (no pre-stresses in the natural configuration). The observation
of 2y in Ry is the domain denoted as €2y (¢) with boundary T'o(¢) U Xo(t). The structure is
submitted to an external body force field p(t, X) (¢,%) in Q(t) in which 7 is the mass density
of Q(t) and asurface force field F(¢, X) on 53(t). We denote the Cauchy stress tensor related to
Q(t) as . The observation of domain (¢) in rotating frame R, isthe domain denoted as )(t)
with boundary I'(¢) U £(t). Finally, we have

o) = {xIx=[QWI"x , X} . (2)
(1) = {x|x=[QWI"%, ke S} 3)
re) = {x|x=[QWI"x, xe T} . (4)
0 = {xo %0 = [QD)]%0 , %o € SNZO(t)} : (5)
2o = {%0 | % = [QO) %, %o € Zo(t) | . (6)
Do = {x0 | %0 = QO] %0 , %o € To(t) | (™)

The displacement field in R, of Q(¢) with respect to €2, is denoted as u, and is such that
X(t, Xo) = Xp + Ug (t, Xo) , VXo € QO . (8)

Using the methodology presented by Truesdell (1974), we can deduce the equations of the
rotating structure for the deformed configuration expressed in R, which are written as

VxeQt), diviO+pf=p ([R(t)]2 + [R(t)]) X+ 2p[R(t)]| X+ pX (9)
VxeX(t)y, On=F (10)
VXo €Ty , Uo(t,Xo) =0 |, (11)

in which p is the mass density of configuration €2(¢), a dot means the partial derivative with
respect to ¢t and where

O(t.x) = [QW]"O LR [QM)] , p(t,x) = p(t.%) , f(t,) = [Q(t)]Ti(tﬂ) ,
[R(t)] = [QOIT[Q)] n=[QRMITA L F(EX) = [QMITFEX)
where exponent 7' means the transpose of amatrix. It should be noted that [R(t)]" = —[R(t)].
If the rotation axis and the rotation speed are constants with respect to time ¢, then [R(¢)] = 0

and [R(t)] is aconstant matrix denoted as [R]. With this assumption, Eq. (9) can be rewritten
as

VxeQ(t) , divO +pf=p[R*X+2p[R]X+pX . (12)

The equations can be expressed in terms of unknown uy using the Piola identity (Ciarlet,
1988) which iswritten as divy, (Fy, TMy) = (det [, )divxO and Egs. (10) to (12) yield

VX0 € Qo , divy, (Fu,Mo)+po fo = po [R]*Xo+po [R]*Uo+2p0 [R] Uo+po Uo , (13)

VXo €Yo , Fyllogno=Fo , (14)

VXo €Ty , Uo(t,Xo) =0 , (15)



inwhich

fo(t, Xo) = f(t, X) , Fo (t, Xo) dSO(Xo) = F(t, X) dS(X) ,
po(Xo) = p(t,x) det Fy, , o= (detFy,) F,') OFL"

8U0 1 T
[Fu0:u+a—X0 , [EUO:E([FUO[FUO—I])

It should be noted that p, is the mass density of the rotating natural configuration 2¢. In
this paper, we consider viscoelatic materials and we refer the reader to the theory of linear
viscoelasticity in finite displacements developped by B.D. Coleman and V. Noll (1961) using
a Lagrangian description. Consequently, the relationship between the second Piola-Kirchhoff
stresstensor and the Green-L agrange strain tensor of the deformed configuration expressed with
respect to €2, iswritten as

+oo
Wo(t,X0) = Go(0, Xo) : Euy (£, %0) + / Bo(s,X0) : Eu (£ — 5,%0) ds (16)
0

inwhich {GO : [EUO }ij = {GO}ijkh {[EUO }kh with summation over k& and h, wheret — Gy (t, Xo)
is the relaxation function defined on R with support R* and values in the fourth-order tensors
and where Gy (t, o) denotes the derivative of Gy (t,X,) with respect to ¢ on J0 + oc[. If the
strucureis only subjected to the stationary parts po (Xo)f§(Xo) and F{(Xo) of the external forces,
then the structure is in equilibrium in a stationary configuration represented by the domain
denoted as2g in R, with boundary I's U 5. Let ugs(Xp) be the displacement field in R, of
Q25 with respect to 2. Let Tys and £, be the second Piola-Kirchhoff stress tensor and the
Green-Lagrange strain tensor of stationary configuration €2 with respect to 2. We have

]]Tos(Xo) = Go(—i—OO,Xo) : [EUOS (XO) , VXp€Qy . (17)
From Egs. (13) to (15) and Eq. (17), we deduce the variational formulation of the boundary
value problem in ugs for the stationary configuration: find ugs in the admissible displacement
fieldsVp = {u € (Hl(QO))3, u=0onTy}, suchthat for al ouinVj,

oou —
/ tr{(@0(+oo,x0) : Euye) [FUTOS—} dXo +/ {po [R]? Ups} - du dxo
Qo 8X0 Qo

= / Po fS (Xo) : EdXO + / F(S)(Xo) : EdSO — / Po {[R]z Xo} : EdXO . (18)
QO Z:0

Qo
where an overline denotes the conjugate of a complex quantity and where “tr” is the trace
operator. Now, the stationary configuration is chosen as the reference configuration. We then
introducein R, the Lagrangian transports form €2 into Q2 and from €25 into 2y such that

XS(X()) = Xo + UOS(XO) , VXO € QO , (19)
XO(XS) = Xg + USO(XS) , VXg € QS . (20)

Let Mg and £, be the second Piola-Kirchhoff stress tensor and the Green-Lagrange strain
tensor of the deformed configuration €2(¢) with respect to Q2s. Consequently, the relationship
between Mg and £, iswritten as

+oo
ms(t,Xs) = Us-f-Gs(O,Xs) : Bug (t,Xs)+/ GS(S, US) : Bug (t—S,XS) ds ,(21)
0



inwhich

Us(XS) = GQ(+OO,X0) : [EUOS) [FT

Uos ’

—F 22
det Fy,s uos ( (22)

1
{Gg(t, XS)}aqu = W{”—Uos}ak{ﬂruos}bl{[Fuos}Pm{[FUos}qn{GO (tv XO}klmn ) (23)
0S

and where Gg(t,X,) denotes the partial derivative of Gg (¢, xs) with respect to ¢ on |0 + oo|
(and not on R). Therefore, the viscoel astodynamic equations of the rotating structure with finite
displacements is rewritten with respect to this reference configuration using the Piola identity
divk, (Fu, Mg) = (det Fy )divyO. We then deduce the variational formulation of the rotating
viscoel astic structure with finite displacements with respect to reference configuration €2g: find
us(t,-) in the admissible displacement fields Vs = {u € (Hl(Qs))?’ , u=0onTg}, such
that for all du in Vg,

dug” ddu r 00U
At By ) Fy L —
/QS tr {(Ug 9xs OxXs } dxs + /QS tr {(GS(O,Xs) us) Fug x5 } dXg

o ' doou
: _ T
+/QS/O tr { (GS(S,XS) : Eug ( S,XS)> Fus (t,Xs)—axs } ds dXs

+/ pS{[R]ZUS}'deS‘FZ/ PS{[R] Us}-deS—F/ ps Ug -des
Qg Q

s Qs

= / pPs fg(t, Xs) . deS + / Fg (t, Xs) . mdSS , (24)
Qs Ys
in which pg fg and Fg are the time-fluctuation parts around the stationary parts ps f¢ and F%
defined by fg = fg+f¢ andFg = FS+F% andwherefs and Fg aresuchthat f5 (¢, xs) = f(¢, X)
and Fs(t,Xs) dSs(Xs) = F(t,X) dS(X).

2. ROTATING STRUCTURE PROBLEM LINEARIZED AROUND THE STATIONARY
CONFIGURATION.

If we consider small values of displacement field ug(¢, -), then we can linearize Eq. (24)
around the stationary configuration. Using the same notation ug for the displacement field of
the linearized problem, field us (¢, -) belongsto Vs and is such that for all ou in Vg

oug ddu dug) ddu
/Qstr{(D_ga—XS a—XS}dXS‘F/QStr{(GS(O,Xs) : 8—)(5) %}dx,g

Foo . Jug > 35U}
+ tr Gs(s,Xg) : —(t — — rds dXx
/Qs /0 { ( s(#Xs) OXs (t=9) OXs o ans

+/ pS{[R]Z US}'deS‘FZ/ PS{[R] Us}-deS—f—/ ps US'deS
Qg Q

s Qs

= / ps fg (t, Xs) . deS + / Fg(t, XS) . EdSS . (25)
Qg Ys
Let Us,f‘;, IEg be the Fourier transform with respect to ¢ of ug, fg, F& and gs such that

+oo ) N 400 )
Us(w,xs):/ =19t ug(txs) dt g(w,xs):/ IS (1 xg) dE

— 00 — 00



A~ +w . +w . -
F5(w,Xs) = / e'WIFS(t xs)dt ,  Gs(w,Xs) = / e”*“! Bs(t,xs) dt
0

The Fourier transforms of external forces pg fg and Fg with respect to ¢ are assumed to be
defined as functions (this assumption is coherent due to the centring of external forces around
their stationary parts). Let Ag and Bs be the elastic and damping tensors with respect to Q2g,
defined by (R. Ohayon & C.Soize, 1998)

As (w, Xs) = @s (0, Xs) + %6{@5(&), Xs)} , W [Bg(w, Xs) = %m{@g(w, Xs)} . (26)
Let V¢ be the antidual space of Vs, and < -, - > be the antiduality product between V¢ and Vs.
Let £(Vs, V) be the set of al the bounded linear operators from Vs into V. Assuming that
O 5 isabounded function in 25 and that external forces are sufficiently regular, we introduce
the operators K. (w), K4, K¢, D(w), M and C belonging to £(Vs, V¢) and the element f¢(w)
belonging to V§ such that, for al u and éu in Vg,

ou \ ddu
< Ke(w u,5u>:/ tr{(A w, X :—)—}dx , 27
(w) . s(w,Xs) oxs ) oxs | P (27)
ou” dsu
K = — — 2
< Kyu,éu > /Qstr{ﬁgaxs 8x5}dxs , (28)
< K.u,déu >:/ ps {[R]>u} - Sudxs |, (29)
Qs
<Mu,(5u>:/ psU-dudxs (30)
Qs
ou \ ddu
D ou >= t B t— | =— ¢ d 1
< D(w)u,éu > /QS f{( s(w,Xs) 8x3> 8x5} Xs (31)
< Cu,du >:2/ ps {[R] u} - Sudxs (32)
Qs
< fe(w),du >:/ ps?g(w,xs)ﬁdstr/ F%(w, Xsg) - 0UdSs . (33)
QS Z:S

Note that K.(w), D(w) and M are hermitian positive-definite operators, C is an anti-hermitian
operator, K. is an hermitian negative operator and K, is an hermitian operator. In the low-
frequency domain, K .(w) can be considered as an operator independent of frequency w. Intro-
ducing the operator K = K, + K, + K. belonging to £(Vs, V), the linear operator equation
corresponding to Eq. (25) iswritten as

(5 a] e[S 8] 28 ST [0 =[] - o

Introducing A = —iw, theeigenval ue problem associated with the conservative systemisdefined
asfollows: find (u; , u) in Vs x Vg and A € C such that

K 0 up | C M uq
o w] [ =2 S b)) 5
When K is a positive-definite operator, then it is shown that the spectrum is constituted of a
sequence {\, }o>1 such that each eigenvalue A\, has a finite multiplicity and |A\,| — +oo

when a — +o00; each eigenvalue can be written as A, = —iw, in which w,, is a non-zero
real number. In addition, if w, isasolution then —w,, isaso a solution. Finaly, the familly




{(Uq,1, Uqa,2)}a>1 Of the corresponding eigenfunctions forms a complete set in Vg x Vg and
verifies the following orthogonality conditions

<KUy1,Ug1 >+ < MUy, Uga >=0ag , (36)
7
< ClUg,1, U1 >+ <MuUy, Ug1 >— < MUy, Ug o >= w—5ag , (37)

«

inwhich 0, isthe Kronecker symbol. If (Us , iwlg) isexpanded as

~ 400
Us _ ua,l
BrAE A A &

then, for all integer 3 > 1, we have

400
(1 — wi> Ug + 1w Z < D(w) Ug,1,UB,1 > U, =< fe(w),ug,1 > . (39)
s a=1

3. PERTURBED NONLINEAR EQUATION IN THE ROTATING FRAME WITH
RESPECT TO THE STATIONARY CONFIGURATION.

3.1 Perturbations of the rotating natural configuration €.

In this section, we define the perturbations of the natural configuration €2, observed in the
rotating frame. In afirst step, we introduce a domain € as a domain occupied by the perturbed
natural configuration observedinR ;. We define the geometrical perturbations as a displacement
fieldin R, denoted as u,; and defined on €2y. We have

Q=G » Xg=X +UgXo) , VX €o} . (40)

In asecond step, we transport mass density p, and relaxation function G, from €2, to {25 which
are denoted as p5 and G; respectively. We have

p5(Xo + Ugg(X0)) = po(X0) ,  Gg(t,Xo + Ugg(Xo)) = Go(t,Xo) - (41)
In alast step, we introduce the perturbations A p5 and AG; of pg and Gy with respect to (25

In practice, the perturbations Ap; and AG; of the mass density and the relaxation function
have to be defined with respect to domain £2y. Consequently, we proceed to a Lagrangian
transport of perturbations Aps; and AG5 from €25 to €, and we use the same notation. Due
to this perturbations, stationary configuration 2s is modified and occupies a domain denoted
as (0. Nevertheless, we do not consider the viscoelastodynamic equations of the perturbed
configuration around €2 but we consider it around €25 because, in practice, al the calculations
are performed with respect to the stationary configuration of the unperturbed structure. In R,
and at time ¢, the deformed configuration of the perturbed structure occupies a domain denoted
as Y’ (t). We then introduce new displacement field u’y (¢, -) which represents the displacement
field of Q' (¢) with respect to Qg,

X/(t,XS) = Xg + Uig(t,XS) , YXg €Qg . (43)

3.2 Weakly perturbed nonlinear equationsin therotating frame with respect to the
unperturbed stationary configuration.

If the perturbations are sufficiently small, then the nonlinear equations of the perturbed
structure in the rotating frame (with respect to the the unperturbed stationary configuration)
can be linearized with respect to perturbations u;, Apy and AG; (we do not consider the



linearization with respect to displacement field u). In the following equations, each quantity
which is related to €2g and which is expressed as a function of X, has to be submitted to the
Lagrangian transport defined by Eqg. (20). In order to simplify the equations we introduce the
tensors T4, T, K; and Ky such that
(K305 bsaon = o {Funs b (P b (v o (44)
1
~det Fuos

{I}_UOS }ja {[Fuos}ih {[Euos}pq {GO(+007 XO)}akpq

{T1(Xs) bijen = = 5= 1{Fuos }ia {Fuos }in {Eups Jpg {Go (400, X0) }akpg

1

~ det Fuos

2
- 7{["_%5}1'(1 {[Fuos}jb {[EUOS}Ph{GO(+OO7 XO)}abPk
det [y,

1
det [y,

{Fups Yia {[FUOS}jb {Go (400, XO)}akpq ) (45)

1
det Ty,

1
{—H—Z (t7 XS)}aquij = _W{U—Uos}ak {[Fuos}bj {I}_UOS }Pm {[Fuos}qn {GO (tv XO)}kimn
0S

1

~ det Fuos
1

~ det Fugs

1
- W{[Fuos}ak {Fuos bot {Fuos Fpm {Fuos Faj {Go(t, X0) }kimi (47)
Uos

Therefore, displacement field u (¢, -) in Vs issuch that for all ou in Vg,

ou's Dou ou'l Bsu
/QS tr{(Ug OXs axs}dx5+/95 tr{([Kl > A65(+oo,x0)) s OXS}de
Ougg) du'y du . ou's ddu
+/QS tr{(m " 0% > OXs OXs ixs +/QS(dIVX° Uop) ) Os E)xs IXg dxs
o6u
+ [ tr{(Gs(0,xs): Ey | FL }dx
/szs {( s(0,xs) ) L e [ XS
‘|‘/ (diVXOUOG) tr{(GS(O Xs) [E ) [FT 85u}d S
Qs s 0
A 7 00U
+/Qstr{{<wz(o,xs). 8X0> .[E%] [Fuga }dxs
+/ tr{[([K2 :: AG5(0, %)) : Ey ] F7 36“}dx5
Qs s 0

oo : T déu
+ tr Gg(s, xs) : Ey (t — s, xs)> FL, (t,%s) 5 ¢ ds dxs
Qs s OXs

/Q S /+°° (divy, Ugg) tr{<<Bs(s Xs) : By (= s xs)> FL (t, xs)?} ds dxg

Xs

{[K2(XS)}abqulmn = {[Fuos}ak {[Fuos}bl {[Fuos }pm {[Fu()s}qn ) (46)

{[Fuos }aj {I}_UOS }bl {[Fuos }pm {I}_UOS }qn {GO (t, XO)}ilmn

{Fuos Fak {Fuos tor {Fuos tpj {Fuos tan {Go(ts Xo) riin




+Oo ] Mo r Jou
+/QS/0 tr{|:<—|]—2(57XS) : 8X0 ) : [Eufs,(t - 57XS):| ﬂ_u%(t,xs)%} ds dXS

+/QS /:oo tr { [([Kz :: AGa(s,x0)> (- S,Xs)] Fur (¢, XS)gT} ds dXs

Xs

+/ pgl','lig -EdXS + / ps (divxouoa) Uig - deS
QS QS

Ap= _ _
+/ iug-éudxkgjt/ ps{[R]*Us} - 0udxs
QS det [FUOS' QS

. — A _
+/ ps (divi,Uys) {[R]2Ul} - 3u dxs+/ =0 ([R]2ul} - Sudxs
Qg Qs det [FUOS

+2/ ps{[R]u'S}-mdeH/ ps (div, Ugs) {[R]0s} - 50 dxs
Qg Q

S

+2/ A1 {[R]US} - dudxs =< f'(t),0u > — < f¢(t),0u >

inwhich
{Ki(Xs) :: AG
{Ka(xs) = AG

and wheref’(¢) and f¢

< f/(t), ou >= / Fig(t,XS) -EdSs + / pPs ffg(t,Xs) -deS
25 QS

—+00, Xo)}” = {[Kl(XS)}szqab {AG (_'_OO XO)}aqu )

X0) }ijpg = {K2(Xs) Yijpakimn {G5(s, X0) btmn

t) are the elements belonging to V4 such that for all éu in Vg,

Gy (
o(s
(

. — A —
+/ ps (divy,Ugg) fg(t,xs)-éudxs+/ o f5(t,Xs) - Oudxs
QS’ det |FUOS

< f¢, ou >:/ F&(Xs) -EdSS+/ ps fE(Xs) - dudxs
ZS QS

. — A _
+/ ps (divg,Uyg) {[R]*Xs} - dudxs +/ "0 ([R]’xs} - 0u dxs
Qs Qs det [FUOS

odu ou.=\ Odu
di t d t T,: 20 d
+/QS( Mo U 00) r{(D'Sa S} XS_'_/QS r{( ! 8Xo> E)Xs} Xs

26U
—|—/ tr { ([K1 o A66(+OO,X0)) } dXS R
Qs IXs

In Eq. (51), f5 and F are defined by
Fs(t,xs) dSs(xs) = [QU)]F(t,X) dS(X) ,  fa(t,xs) = [QH)]F(t X)
inwhich x'(¢,xs) = Xg + Us(t, Xs).

(51)

(53)

3.3 Linearization of the perturbed nonlinear equations in the rotating frame

around the unperturbed stationary configuration.

In afirst step, we introduce the operators Pg (w), Pas(w), Po(w) belonging to £(Vs, V&)

such that

ou ouT déu
P — 'I]' 00
< Pg(w)u,éu > /Qstr{< g > e 8Xs}dxg




+/Qs (divy,Ugg) tr {@'5%%}6&5

+/QS (div, Uyg) tr{(As : ;72) Zi: } dXg

+iw / (divy,Ugp) tr{([BS(w Xs) : ;)Xl;) gi:}dxs
[ o{ ({00 Gm) ] e f s
e[ (e ) 5 G

—w2/ ps (divy,Ugg) U'EdXS—f—/ ps (divi,Ug) {[R]?u} - dudxs
Qs Q

S

+2z’w/ ps{(divi,Ug5) [R]u}-dudxs (54)
Qg
Apg Aps —
< Pup(w u,6u>:/ RJ?ul - dudxg — w? / O _u-dudxg
m(w) a0, de t[FuOS{[ [ui- 0. det Fy,,
Apg —
+2z’w/ O _{[R]u}-dudxs |, 55
e R T (55)

ouT dsu
< Pg(w)u,du >= /QS tr{([Kl :: AG5(+00,X0)) %%} dXg

ou | ddu

# [ e[ sastom) o] b s (50

inwhich ts(w, xs) and Agy(w, Xs) are such that

~

+OO . . +Oo . .
b2 (w, Xs) :/ e Ut To(t, Xs) dt , Agg(w, Xo) :/ et " Ay (t,%o) dt
0 0
In asecond step, in the context of linearization, we write displacement field uy as
Ufg(t, XS) = ug’/(XS) + ug’/(t7XS) ) (57)
inwhich ug in Vs issuch that for al éuin Vg,
< Kug,d0u >+ < Pg(0)ud,du > + < Py (0)ug,du > + < Pg(0)ug, du >

:/ Fg(xs)-ou dSs+/ ps T8 (xs) - udxs— < ¢, 6u >
Xs Qs

. — Apg —
+/ psdivi,Ugg T8 (¢, Xs) - ou dx5+/ — 2 f¥(t,xs) - dudxs , (58)
Qg det [FUOS

wheref and Fy arethe stationary partsof fieldsfy and F. Let f¢/(¢) bethe element belonging
to V¢ such that for all éu in Vg

< £9(1), 6u >=< (1), 6u > —/ F2/(xg) - 5U dSs —/ ps 15 (xs) - 30 dxs
Ys Qs



. — A —
—/ psdivy,Ugg TS (Xs) -5udx5—/ 7o f¥(xs)-dudxs . (59)
Qg Qg det [FUOS

It should be noted that field u’ corresponds to the displacement field of Q= with respect to Qs

calculated with the linearized equation with respect to the displacement field. Lettug and fer (w)
be the Fourier transform with respect to ¢ of ug and f¢'(¢) such that

o0 ) N +oo
0% (w, Xs) :/ e " Ctug(t,xs) dt , < ¢ (w), du >= / e Wt f(t), 0u > dt.

— 00 — 00

Then for small strains and in the frequency domain, the linear operator equation corresponding
to Eq. (48) iswritten as

[K+iwC+iwD(w) — w?*M + Pg(w) + Py (w) + Po(w)] UF (w,xs) = f¥(w). (60)

Since {(Uq,1 , Ua,2) }a>1 formsacompletesetin Vs x Vg, then (Ug , iw UZ) can be expanded
as

s | = ZU’ ] (61)

Therefore, Eq. (60) can be rewritten such that for all integer 8 > 1,

+o0
(1 - —> Up+iw Z <D(w)Ua,1,Up1 > Ul + > <Pg(w)Ua,1,Ug1 > U,

wﬂ a=1 a=1
400 400

+ Z < PM(w) Uy,1,Ug 1 > U(; + Z < Pc(w) Ug,1,UB,1 > U(;
a=1 a=1

—<F'W),ug1> . (62)
4. CONCLUSION.

We have presented the nonlinear structural dynamic equations in finite displacements of a
rotating structure expressed with respect to a pre-stressed configuration (2s. We have considered
perturbations of the natural configuration of the structure. Then, we have written the nonlinear
viscoel astodynamic equations of the weakly perturbed structure in finite displacement. For
small strains around the stationary configuration, the equations of the weakly perturbed rotating
structure are linearized around stationary configuration €2s. Then the solution of the perturbed
problem is expanded on the eigenfunctions of the unperturbed rotating structure. We show that
the equations obtained are not self-evident, particulary for geometrical perturbations.
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